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Abstract--The original problem for thermally developing heat transfer in laminar flow through a circular 
tube, as formulated by Graetz, did not consider the 'slip-flow' condition. This paper extends the original 
work of Graetz to include the effect of slip-flow, which occurs in gases at low pressures or in microtubes 
at ordinary pressures. A special technique was developed to evaluate the eigenvalues for the problem. 
Eigenvalues were evaluated for Knudsen numbers ranging between 0 and 0.12. Simplified relationships 
were developed to describe the effect of slip-flow on the convection heat transfer coefficient. © 1997 Elsevier 

Science Ltd. All rights reserved. 

1. INTRODUCTION 

1.1. The Graetz problem 
By the end of the last century, the problem of forced 
convection heat transfer in a circular tube in laminar 
flow gained interest because of its fundamental 
importance in physical problems such as the analysis 
and design of heat exchangers. 

The Graetz problem is a simplified case of the prob- 
lem of forced convection heat transfer in a circular 
tube in laminar flow. With the assumptions of steady 
and incompressible flow, constant fluid properties, no 
'swirl' component of velocity, fully developed velocity 
profile, and negligible energy dissipation effects, Gra- 
etz [1] originally solved this problem analytically. The 
solution by Graetz involved an infinite number of 
eigenvalues and in this paper only the first two eig- 
envalues were evaluated. 

Since the accuracy of the Graetz solution depends 
on the number of eigenvalues, it is extremely impor- 
tant to obtain more eigenvalues as Tribus and Klein 
[2] pointed out. For seventy years the research for this 
problem focused mainly on finding more eigenvalues. 
Abramowitz [3] employed a fairly rapidly converging 
series solution of the Graetz equation in making the 
calculation and found the lowest five values with much 
more accuracy. Sellars et al. [4] extended the problem 
to include a more effective approximation technique 
for evaluation of the eigenvalues of the problem and 
they could get any number of eigenvalues as needed. 

1.2. The Graetz problem extended in slip-flow 
Applications of microstructures such as micro heat 

exchangers have led to increased interest in convection 
heat transfer in microgeometries. Some experimental 
work has been done, such as the experimental inves- 
tigations in microtubes [5], in microchannels [6] and 

in micro heat pipes [7]. Appropriate models are 
needed to explain the significant departures in the 
microscale experimental results from the thermofluid 
correlations used for conventional-sized geometries. 
For example, the measured heat transfer coefficients in 
laminar flow in small tubes have exhibited a Reynolds 
number dependence, in contrast to the conventional 
prediction for fully established laminar flow, in which 
the Nusselt number is constant [5]. Also, an exper- 
imental investigation of fluid flow in extremely small 
channels has shown that there are deviations between 
the Navier-Stokes predictions and the experimental 
observations [6]. 

Therefore, some effects and conditions that are nor- 
mally neglected when considering macroscale flow 
must be taken into consideration in microscale con- 
vection. One of these conditions is slip-flow [8, 9] in 
which the non-slip condition at a surface is no longer 
valid. It has been found that the Navier-Stokes equa- 
tions combined with slip-flow conditions can fit the 
experimental data in microchannels with uniform 
cross-sectional area [l 0] and with non-uniform cross- 
sectional area [11]. 

Slip-flow occurs when gases are at low pressures or 
for flow in extremely small passages. At low pressures, 
with correspondingly low densities, the molecular 
mean free path becomes comparable with the body 
dimensions, and then the effect of molecular structure 
becomes a factor in flow and heat transfer mechanisms 
[121. 

The relative importance of effects due to the rarefac- 
tion of a gas can be indicated by the Knudsen number, 
a ratio of the magnitude of the mean free molecular 
path in the gas to the characteristic dimension in the 
flow field. The effects of rarefaction phenomena on 
flow and heat transfer become important when the 
Knudsen number can no longer be neglected. 

In defining when slip-flow occurs, Beskok and Kar- 
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Aw tube surface area [m 2] 
aj coefficient in equation (13) 
ai,k coefficient in equation (33) 
c characteristic velocity [m s-J] 
C, coefficient in equation (20) 
Cp unit heat capacity at constant pressure 

[J kg I K- I ]  

cv specific heat at constant volume 
[J kg - l  K -1] 

dk coefficient in equation (34) 
D tube diameter [m] 
Ec Eckert number 
F tangential momentum 

accommodation factor (ur-u~)/ 
(Uw-u~) 

Ft thermal accommodation factor 
G G(r*), Graetz function 
Gz Graetz number, (Re Pr(D/L)) 
h~ local convective heat transfer 

coefficient [W m 2 K ~] 
H characteristic dimension [m] 
k thermal conductivity [W m J K -1] ; 

evaluated term in equation (32) 
Kn Knudsen number, (A/D) 
L length of tube [m] 
Nu overall Nusselt number, (h~D/k) 
Nu~ local Nusselt number, (h~D/k) 
Pr Prandtl number, (v/ct) 
Q heat transfer rate [W] 
r radius [m] 
r* dimensionless radius, (r/R) 
R tube radius [m] 
Re Reynolds number, (puD/l~) 
T T(r, x), temperature [K] 
TB bulk temperature [K] 

NOMENCLATURE 

U 

Ui 

Ur 

u. 

X 

X*  

velocity in x direction [m s l] 
average streamwise velocity of the 
incident molecules [m s-l]  
average streamwise velocity of the 
reflected molecules [m s-i]  
average streamwise velocity of the 
surface [m s-J] 
distance along tube [m] 
dimensionless distance, (x/L). 

Greek symbols 
a fluid thermal diffusivity, (k/p%) 

[m 2 s- ' ]  

fl parameter related to Kn, (1 +4Kn) 
7 ratio of specific heats 
A A = i - k  in equation (3.3) ; 

A = (Nu - Nux) in Fig. 5 
)~ eigenvalue ; mean free path of gas [m] 
# dynamic viscosity [kg m -  l s-  ~] 
v kinematic viscosity [m 2 s-~] 
p density [kg m -3] 
0 dimensionless temperature, 

( T -  Tw)/(To- Tw) 
0~ dimensionless bulk temperature, 

(TB-  Tw)/(To-- Tw) 
OB,L dimensionless fluid bulk temperature 

a t x = L  
0LN dimensionless LMTD. 

Subscripts 
0 a t x  = 0 
B bulk 
m mean 
s slip-flow 
w wall. 

niadakis [9] have proposed a classification of four flow 
regimes for gases as follows : 

continuum flow 
slip-flow 
transition flow 
free molecular flow 

Kn < 10 -3 
10 3<<.Kn< 10 l 
10 i <~Kn< 10 
10 4 Kn. 

When slip-flow occurs, the gas adjacent to the 
surface, in contrast to its behavior in continuum flow, 
no longer reaches the velocity or temperature of the 
surface. The gas at the surface has a tangential velocity 
and it slips along the surface [13]. The temperature of 
the gas at the surface is finitely different from the 
temperature of the surface and there is a jump in 
temperature between the surface and the adjacent gas 
[14]. Eckert and Drake [12] give expressions for the 
temperature jump condition and slip velocity at the 
surface. The slip velocity as a function of the velocity 
gradient near the wall can be expressed as : 

2 - F  /du \  

For the case of internal flow in a circular tube, the 
expression can be modified as [12] : 

2 - F  [du\  

Equation (1) includes the consideration of three 
accommodation coefficients represented by the tan- 
gential momentum accommodation coefficient F. For 
most engineering surfaces, F has values near unity. In 
the case of F having value one, equation (2) reduces 
to equation (3) for r = R 

u~ \dr  jr= R (3) 

which can be applied to evaluate the velocity. 
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The original solution by Graetz is valid for con- 
tinuum flow; however, for gases at low pressures or 
in extremely small tubes, the flow may enter the slip- 
flow regime, in which case the velocity at the tube 
surface is not zero. In this case, the heat transfer 
coefficient depends not only on the Reynolds number 
and Prandtl number, but also on the Knudsen 
number. Therefore, the slip-flow condition requires a 
new solution for the temperature and velocity fields. 

2. MATHEMATICAL STATEMENT 

Using the boundary layer approximations and neg- 
lecting viscous dissipation (valid for Pr Ec < 0.01 
where Ec = Eckert number), the two-dimensional 
energy equation in cylindrical coordinates may be 
written 

o r  ~ 0 / 0 v 5  

= 7rrrt' )" 

Let us consider the case for tube flow which is fully 
established hydrodynamically, but which is develop- 
ing thermally. The velocity profile is fully-established 
at the end of the insulated section at x = 0, and the 
temperature of the fluid entering the uninsulated sec- 
tion is uniform at T = To. The velocity distribution 
has been given by Wang [15] as 

u 2(1 - r .2) + 8Kn 

Um 1 + 8 Kn 

Equation (4) can be written with dimensionless vari- 
ables as 

Gz O0 1 O [~ * O0 "~ 
2(1 +8Kn) 0.~c* - ( l - r * 2 + a K n ) r  * ff~r*t r ~gr*) 

with boundary conditions : 

0 ( 1 , x * ) = 0  f o r x * > 0  

O(r*,O) = l forx*~<0. 

Substituting the assumed solution form into equation 
(6) and rearranging, results in the following : 

Gz dX 
2(1 + 8Kn)X dx* 

1 d {' , dG'~ _12 
= ( l_r*2+4Kn)r*~r*t  r ~ r * ) =  (9) 

where 2 is an arbitrary constant. The two total differ- 
ential equations which result are : 

dX 2(1 + 8Kn)22 
dx* + Gz X = 0 (10) 

d2G [1  dG'~ 22 
d r ~ S + t ~ r , ) +  (1-r*2+4Kn)G=O.  ( l l )  

The solution of equation (10) is: 

I 2(1+8Kn)2 2 q 
- -  X *  X(x*) = Cexp -- Gz /" (12) 

(4) 
The solution of equation (11) may be obtained by the 
method of Frobenius. Assuming the function G(r*) to 
be a power series gives 

G(r*) = ~ air *j. (13) 
/=  0 

For the coefficients a ,  

a 0 = l  

a j = - (2/2) 2 (1 + 4Kn). 

F o r j  >~ 2, the following recursion relationship can be 
(5) developed : 

a i = -- (2/2j)2[(1 +4Kn)aj t -as-2] 

fo r j  = 2,3,4 . . . .  (14) 

At the surface of the tube (r = R), the temperature 
in slip flow was postulated by Poisson [12] and can be 
written as 

(6) T~- Tw - 2 -  Ft 2y ~_{OT) 
Ft l + T e r \  dr J,= R" (15) 

Introducing the dimensionless variables, this con- 
dition may be written as 

(7a) 
= (Ts - -Tw)=  2--Ft 47 K . ( ~ O )  

(7b) 0s \T0 - Tw) F t 1 5 7  Prr t~r*Jr.= ," 

Equation (7a) states that the temperature along the 
tube wall is uniform while equation (7b) states that 
the inlet temperature distribution is uniform. 

3. THE GRAETZ SOLUTION 

Equation (6) can be solved by a separation-of-vari- 
ables technique where the solution may take the form 

O(r*, x*) = G(r*)X(x*) (8) 

(16a) 

We note that : 

05 = 0(1,x*) = X(x*)G(1) (16b) 

00(I, x*) X" . ,dG(1) 
Or* - tx ) ~gr* " (16c) 

and 

2 - F t  47 KndG(1) 

Therefore, 

G(1) -- Ft l+y  Pr dr* (17) 
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Equation (13) and the derivative of G(r*) with respect 
to r* can be written as 

G ( r * ) =  ~ a 2 j r  * ~  = l+azr*2+a4r*4+ ... 
/~0 

dG(r*) _ ~, 2ja2jr,2j_. = 2a2r* +4a4r .3 + - "-. 
dr* 

Making these substitutions into equation (17), and 
substituting r * =  1, the following condition is 
obtained : 

. 47 Kn 

Equation (18) defines the eigenvalues for the present 
problem. The coefficients aj are functions of the eig- 
envalues 2., where n = 0, 1 ,2 , . . .  The eigenfunctions 
for this problem may be written as : 

G.(r*) = ~ a2j(2.)r *2j n = 1,2,3 . . . .  (19) 
j =  0 

The solution for the temperature distribution in terms 
of a generalized Fourier series may now be written as 

2( ,~ . )2x,(  1 + 8Kn) 1 
O(r*,x*) = ~ C.G.(r*)exp - Gz - 

n=l 

the constants C. may be found from the following 
expression [1]: 

2 

The bracketed term in the denominator may be evalu- 
ated, as follows : 

0G s~ ° ~ r,2, ~ , ] '  da2/ 

4. HEAT TRANSFER COEFFICIENT 

The bulk or average dimensionless temperature in 
the circular tube may be expressed as 

i '( 
OB = 2" U/Um)Or* dr*. 

d 0  

Substituting the velocity distribution from equation 
(5) and the temperature distribution from equation 
(20), the bulk temperature at any location along the 
length of the tube may be expressed as 

4 ~ C~ dG~(1) 
OB - (1 + 8Kn).=~ ( /~n )  2 dr* 

x e x p l - 2 ( 2 n ) 2 x * ( l + 8 K n )  . (24) 

The local heat transfer coefficient can be defined as 

Q/A~ = h~(TB- Tw). (25) 

The heat flux at the wall may be written as 

Aw 0 r~R R ~ r*=l 

(18) (26) 

Equating equations (25) and (26) results in an 
expression for the local heat transfer coefficient. 

k ( ~ o ) 1  - 2 k f O 0 ~ l  
h. = - NO~\&*)[ .= ,  DOB \~r*J[r.=l" 

(27) 
Substituting equation (24) for 0B and the derivative of 
0 with respect to r* from equation (20) and intro- 
ducing the definition of the Nusselt number gives 

dG.(1) 
- 2 C , ,  

n = I dr* 

e x p [ - 2 ( 2 n ) g x * ( l + N K n ) ]  

hxD Gz 
Nux = = 

k OB 

(20) (28) 

The average Nusselt number may be expressed as 

- -  G z  ~ C .  dG~(l)  
Nu = - 0Ly(1 +8Kn),,~=l (/~.)2 dr* 

where the log mean temperature difference has been 
introduced 

(0B,L -- 1 ) 
0LN - - -  (30) 

In(0B,L) " 

5. EVALUATION OF EIGENVALUES 2. 
(22) 

The eigenfunctions given by equation (19) may be 
written as 

G~(1)= ~ a j ( 2 n ) = 0  n = 0 , 1 , 2  . . . .  (31) 
j = 0  

Equation (31) may be rewritten by combining the 
coefficients of the terms containing the same power of 

(23) 2 as 

R(2) = ~ 22kdk 
k = O  

= l+22d l+24d2+26d3+ . . . .  0. (32) 

Equation (32) can be written in more compact form by 
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introducing matrix A,xj that contains the coefficients of  
the same order of  22 elements. 

Ai~:i = 

" a l , l f l  

a2,1 

0 

0 

0 

0 

0 0 0 0 0 .. 

a2 ,2 f l  2 0 0 0 0 . .  

a3.2fl a3.3fl 3 0 0 0 .. 

a4,  2 a4 ,3 f l  2 a 4 , 4 f l  4 0 0 . .  

0 a s , g f l  a s , 4 f l  3 as,sfl 5 0 . .  

0 a6,  3 a 6 , a f l  2 a 6 , s f l  4 a6 ,6 f l  6 . .  

where j = 1,2,3 . . . . .  i = j + l , j + 2 ,  j + 3  . . . . .  2j and 
fl = (1 +4Kn)  for the problem in slip-flow. 

From the matrix, a formulation may be obtained 
to calculate directly the coefficients ai,k related to the 
index i and k. The formulation is given by Wang [15] 
a s  

( -  1) i 

ai,i 22i(i!)2 • 

K 1 
t "~It Kn = O.04 Kn = O.02 Kn = O.O0 

. . . . . . . . . . . . . .  

0 5 10 15 J. 

Fig. 1. Eigenvalues and the eigenfunction for various Kn. 

Table 1. Eigenvalues for different Kn 

Kn 2~ "~2 "~3 24 25 

0.00 2.704 6.679 10.670 14.761 17.255 
0.005 2.671 6.584 10.512 14.220 
0.01 2.639 6 .493  10.359 14.209 
0.02 2.578 6.320 10.071 13 .815  16.576 
0.04 2.468 6 . 0 1 3  9 . 5 6 1  13 .099  15.836 
0.06 2.371 5 . 7 4 7  9.120 12 .560  14.646 
0.08 2.284 5 . 5 1 3  8 . 7 3 7  11.963 14.573 
0.10 2.206 5 . 3 0 5  8.396 11 .514  13.938 
0.12 2.136 5 . 1 1 9  8.096 11 .074  14.273 

When i > k 

a 2 2a (S~ + A -  1) 2 ai,k ~ i,i 
sA=A S~_I A--I 

(33) 

where A = i--  k. 
The coefficients in the eigenfunction can be deter- 

mined by 

2k 
dk = ~. a~.~, (34) 

i--k 

where 

ai.k. = ai.kfl i-2A. (35) 

The coefficients Cn are determined from the relation : 

- 2  
C, - ~ (36) 

2k),2kdk 
k - I  

6. RESULTS 

Using equations (33)-(35), the first four eigenvalues 
for different Knudsen numbers have been obtained 

for the problem of  slip-flow in a circular tube. Figure 1 
shows the plots of  the eigenfunction given by equation 
(32) for various Knudsen numbers under slip-flow 
conditions. It shows that the eigenvalues decrease as 
Kn increases. For  Kn > 0 the plots appear unstable 
after the fifth root so that only the first four values 
are reliable. The possible cause for the instability is 
that the truncation errors are magnified by the factor 
(1 +4Kn)  i on ai, i in the modified matrix A [16]. Table 
1 lists the eigenvalues for 0.00 ~< Kn <~ 0.12. The 
absence of  a fifth eigenvalue for Kn = 0.005 and 
Kn = 0.01 is due to the uncertainty of  the eig- 
enfunction after the fifth eigenvalue as previously 
described. 

With the eigenvalues known, equation (28) may be 
used to determine the local Nusselt number Nu~. The 
accuracy of  Nux is dependent on the number of  eig- 
envalues used in the calculation. This effect is shown 
in Fig. 2, where Nu,  is plotted as a function of  x*/Gz 
for Kn = 0.02. The value of  the local Nusselt number 
converges dramatically with the increase in the num- 
ber of  eigenvalues in the computation.  For  regions 
near the tube entrance, the number of  eigenvalues has 
a significant effect on Nux. At x*/Gz = 0.02, the error 
in Nux when only one eigenvalue is used (the hori- 
zontal line) is 14%, while the two eigenvalue solution 
is only 0.7% in error. F rom the data given in Fig. 2, 
it may be concluded that results obtained using four 
eigenvalues are sufficiently accurate for x*/Gz > 0.02. 
When x*/Gz is greater than 0.05, the error is at most 
1.3%, that is, all the three plots become nearly flat, 
indicating a thermally fully-developed condition. 
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0 

n : n u m b o r  o f  a n l g e f ~ m k J ~  u s o d  I n a ~ u l ~ l o n  

Kn = 0 . 0 2  

6 

F N ~  4 ~  3.Sl0620 

4 ~--~1~-- I 

" " '0~4 " l '  ' ' 0 . 0 5  . . . .  ~ . . . .  30.00 0.~ ~ " (  ) 0 0 6  0 .06  0.10 
x*/Gz 

Fig. 2. The local  Nussel t  n u m b e r  as funct io  n of  axia l  l o c a t i o n  

U 

~ 0 , 0 0 |  n l n l a  n t -  | . . . .  * . . . .  * . . . .  * . . . .  * 
0,~ 0.04 0.06 ~ 0.10 0.12 

Ka 

Fig. 4. Ful ly  developed Nu as a funct ion  of  Kn for n = 4. 

42 

4.O 

U 

0 .12  

5,0 0 . 1 0  
g" 0.08 

4,11 4 t .71  

i i . • i . . . .  i . . . .  i . . . .  i 

x*lC, z 

Fig. 3. Local  Nusse l t  n u m b e r  as a funct ion of  x*/Gz and  Kn 
f o r n  = 4 .  

Using four eigenvalues, Nux was computed for vari- 
ous values of Kn, as shown in Fig. 3. The effect of slip- 
flow on Nux is clearly seen. As Kn increases, which 
indicates that the wall boundary condition moves fur- 
ther from the traditional non-slip condition, Nux 
increases at a fixed location. This effect is greatest near 
the tube entrance. For values of x*/Gz > 0.05, all 
the curves appear to reach some asymptotic value, 
indicating a thermally fully-developed condition. 

The fully-developed Nusselt number Nuoo for 
different Kn is given in Table 2 along with values of 
Nu~ which have been scaled using the value of Nu~ 
for Kn = 0 (the non-slip condition). Values of Nu~ 
increases with Kn, with the increase as high as 22% 

Table  2. Values  of  Nu~ vs Kn 

Kn Nu~ Nu~/3.657 

0.00 3.657 1.0000 
0.005 3.710 1.0145 
0.01 3.761 1.0284 
0.02 3.855 1.0541 
0.04 4.020 1.0993 
0.06 4.160 1.1376 
0.08 4.228 1.1697 
0.10 4.380 1.1977 
0.12 4.471 1.2227 

for Kn = 0.12. The data indicate that for Kn = 0.01, 
Nu~j increases about 3% while at Kn = 0.02 the 

o increase is greater than 5 %. Thus, it may be concluded 
that the effect of the slip flow should be considered 
for conditions in which Kn >1 0.01. The data from 
Table 2 is shown graphically in Fig. 4. The effect of 
Kn on Nun is seen to diminish as Kn increases. 

The average Nusselt number can be computed using 
equations (29) and (30). These data are shown in Fig. 
5 along with Nu~ as functions ofx*/Gz for Kn = 0.02. 
As expected, equation (29) results in values of Nu that 
are gzater than Nux at any x and the trend exhibited 
by Nu follows that of Nux, starting at a high value, 
decreasing rapidly as x*/Gz increases, and approach- 
ing zero at large x*/Gz. 

At the wall, the dimensionless temperature gradient 
within the gas and the dimensionless temperature 
jump may be computed from equation (16c) and 
(16a), respectively. These quantities are shown in 
Table 3 for 0.0 ~< Kn <<, 0.12, Pr = 0.7, and 7 = 1.4 
(air properties) at x*/Gz = 0.01, for which flow may 
be considered thermally fully-developed. Note that 
the magnitude of the dimensionless temperature 
gradient increases with Kn, as does the dimensionless 

a ~ Kn = 0.02 

% 6 

4 

I{" 2 

A 

0 i i • • t . . . .  I . , , , i . . . .  ! 

0 . 0 6  0.10 0.18 0 2 0  

+*/Gz 

Fig. 5. Nu, Nu+ and A as funct ions o f  dimensionless axiaL 
loca t ion  for Kn = 0.02 and  n = 4. 
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Table 3. Dimensionless temperature gradient at the wall and dimensionless temperature jump for Pr = 0.7, 7 = 1.4, and 
x*/Gz = 0.01 

Kn 0.00 0.01 0.02 0.04 0.06 0.08 0.10 0.12 

dO/dr*lr._t - 1.8458 - 1.8735 - 1.8938 - 1.9343 - 1.9669 - 1.9942 -2.0175 -2.0370 
0~ 0 0.0625 0.1263 0.2579 0.3934 0.5318 0.6725 0.8148 

8 
I 

t~ 

0"1;08 

0 . 0 0  K ~  

0 i • , • i . . . .  i . . . .  i . . . .  i . . . .  i 

x*lGz 

Fig. 6. (Nu--Nuo~) or A as a function ofx*/Gz. 

t empera ture  jump.  Both  of  these effects are consis tent  
with the effect of  Kn on Nu~. 

For  practical  purposes,  a simplified expression for 
calculat ion of  the Nussel t  n u m b e r  is needed. Figure 6 
shows the difference between the average and  fully- 
developed Nussel t  n u m b e r  ( N u -  Nu~) for A as a func- 
t ion of  x*/Gz for various Kn. Using a least-squares 
curve-fit technique,  the following exponent ia l  
expressions, consis tent  with the form proposed by 
Hausen  [l 7], were found  

C1Gz 
A (37) 

1 + C2 (Gz) 2/3 

where the cons tants  C~ and  C2 are given as funct ions 
of  Kn in Table  4. 

7. CONCLUSION 

The original Graetz  problem for thermally developing 
heat transfer in laminar flow through a circular tube was 
extended to include the effects of slip flow. The results 
of the analysis indicated that, for a given Graetz number,  
the Nusselt number  and the convection heat transfer 
rate were increased as the Knudsen number  increased. 
This is one of  the mechanisms that  has been suggested 
as being responsible for the enhancement  of  heat transfer 
in gaseous convection in microtubes. A simple cor- 
relation (equation (37)) was obtained between the Nus- 

Table 4. Coefficients C] and C2 ffomequation (37)vs Kn 

Kn 0.00 0.02 0.06 0.10 0.12 

Ci 0.0662 0.0702 0.0762 0.0803 0.0819 
C2 0.0419 0.0465 0.0614 0.0709 0.0750 

selt number,  the Graetz number  and the Knudsen num- 
ber for slip flow in a circular tube. 
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